REGULAÇÃO TRANSCRICIONAL DO METABOLISMO DE GLICEROL-3-FOSFATO INDUZ RESISTÊNCIA À FERRUGEM DO CAFÉ¹

Lizandra Cristina de Oliveira Figueiredo Gazolla²; Dênia Pires Almeida³; Isabel Samila Lima Castro⁴; Alex Gazolla de Castro⁵; Luiz Vinícius de Souza Arruda⁶; Nívea Maria Vieira⁷; Hilário Cuquetto Mantovani⁸; Laércio Zambolim⁹; Eveline Teixeira Caixeta¹⁰; Tiago Antônio de Oliveira Mendes¹¹

¹Trabalho financiado pelo CNPq, FAPEMIG e CAPES

RESUMO: A produção mundial de café tem sido profundamente afetada pela ferrugem do cafeeiro, doença causada pelo fungo biotrófico *Hemileia vastatrix*. Apesar do Híbrido de Timor 832/2, um híbrido natural de *Coffea arabica* e *C. canephora* resistente à ferrugem, ser uma importante fonte de genes para programas de melhoramento genético, o mecanismo associado à resistência incluindo a regulação do metabolismo durante a infecção é pouco conhecido. Reconstruímos o primeiro modelo metabólico em escala genômica (GEM) para café e a análise do balanço de fluxo (FBA), após a integração de dados de transcriptômica, sugeriu o acúmulo de glicerol-3-fosfato (G3P) na via glicolítica do Híbrido de Timor. A quantificação de G3P nos cultivares em estudo confirmou o acúmulo previsto. O tratamento de plantas suscetíveis com glicerol 3% antes da inoculação do fungo aumentou a concentração de G3P e reduziu os sintomas da doença. Esses resultados destacam o G3P e o metabolismo primário de carboidratos como importante via de resistência à ferrugem do cafeeiro.

PALAVRAS-CHAVE: Hemileia vastatrix, modelos metabólicos, glicerol-3-fosfato.

TRANSCRIPTIONAL REGULATION OF METABOLISM INDUCES GLYCEROL-3-PHOSPHATE RESISTANCE TO COFFEE RUST

ABSTRACT: The worldwide coffee's production has been deeply affected by coffee leaf rust, disease caused by the biotrophic fungus *Hemileia vastatrix*. Despite the rust resistant Timor Hybrid 832/2, a natural hybrid of *Coffea arabica* and *C. canephora*, be an important source of genes for breeding programs, the mechanism associated to resistance including the regulation of metabolism during infection is little known. Here, we reconstructed the first genome-scale metabolic model (GEM) for coffee and the flux-balance analysis (FBA) after transcriptomic data integration suggested glycerol-3-phosphate (G3P) accumulation in Timor Hybrid's glycolytic pathway. The G3P quantification in cultivars under study confirmed the predicted accumulation. Treatment of susceptible plants with glycerol 3% before fungus inoculation increased G3P concentration and reduced disease symptoms. These results highlight G3P and the primary carbohydrate metabolism as an important pathway of resistance to coffee leaf rust.

KEY WORDS: *Hemileia vastatrix*, metabolic model, glycerol-3-phosphate.

INTRODUÇÃO

O café é uma importante commodity internacional e o Brasil é o seu maior produtor seguido por Vietnã e Colômbia (Kovalcik *et al.*, 2018). As espécies mais cultivadas são *Coffea arabica* e *Coffea canephora*, sendo a primeira responsável por cerca de 70% da produção mundial (Davis *et al.*, 2011). Em algumas culturas, a produção de café sofre grandes perdas (Talhinhas *et al.*, 2017) e um fator importante é a ocorrência de pragas e doenças. A principal doença que afeta a produção de café no mundo é a ferrugem do cafeeiro, causada pelo fungo biotrófico *Hemileia vastatrix*. Em condições ambientais favoráveis à infecção, a doença pode promover perdas de até 50% na produção (Zambolim, 2016). O Híbrido de Timor 832/2, um híbrido natural de *C. arabica* e *C.canephora*, é uma variedade resistente a *H. vastatrix* e tem sido uma importante fonte de genes para programas de melhoramento. No entanto, o alto potencial adaptativo do fungo e a pressão seletiva causada pelo uso de cultivares resistentes culminaram no surgimento de várias raças fisiológicas capazes de superar a resistência obtida por meio de métodos clássicos de melhoramento (Bettencourt, 1981; Capucho *et al.*, 2012; Barka *et al.*, 2017, Silva *et al.*, 2006). No presente trabalho, utilizamos uma nova abordagem para estudar a relação patógeno-hospedeiro, por meio da integração de dados genômicos e transcriptômicos para a construção do primeiro modelo metabólico para o café. A análise do balanço de fluxo (FBA) indicou acúmulo de

²Mestre em Bioquímica Aplicada, Universidade Federal de Viçosa-UFV, lizandra figueiredo@ufv.br

³Doutora em Genética e Melhoramento, UFV, denia_pires@hotmail.com

⁴ Mestre em Genética e Melhoramento, UFV, samilalcastro@gmail.com

⁵Doutor em Bioquímica Aplicada, UFV, alex.gazolla@live.com

⁶Graduando de Bioquímica, UFV, luizvinicius01@gmail.com

⁷Doutora em Microbiologia Agrícola, UFV, nimvieira@gmail.com

⁸Professor, DSc, Departamento de Microbiologia, UFV, hcmantovani@gmail.com

⁹Professor, PhD, Departamento Fitopatologia, UFV, Viçosa, zambolim@ufv.br.

¹⁰Pesquisadora, DSc, Embrapa Café, Brasília-DF, eveline.caixeta@embrapa.br

¹¹Professor, DSc, Departamento de Bioquímica e Biologia Molecular, UFV, tiagomgmendes@yahoo.com.br

glicerol-3-fosfato (G3P) no cultivar resistente e este resultado foi validado por quantificação por LC-MS. Este metabólito foi descrito como indutor de resposta sistêmica adquirida (SAR) em plantas e é possível que tenha um papel semelhante na resistência do cafeeiro contra *H. vastatrix*.

MATERIAIS E MÉTODOS

Obtenção de dados genômicos e transcriptômicos

O genoma de *Coffea canephora* (Denoeud *et al.*, 2014) foi obtido do Coffee Genome Hub (http://coffee-genome.org/) e Florez e equipe (Florez *et al.*, 2017) forneceram os dados brutos do transcriptoma do cultivar suscetível *C.canephora* Caturra CIFC 19/1 e resistente a Timor Híbrido CIFC-832/2 durante a infecção experimental com *H. vastatrix* raça XXXIII.

Construção do modelo

A reconstrução metabólica em escala genômica foi construída no servidor Modelo SEED (http://modelseed.org/), utilizando os parâmetros padrão do servidor. O modelo gerado foi manipulado com o software COBRAtoolbox (Schellenberger *et al.*, 2011) no MATLAB 2015a (The Mathworks, 2015), onde foi realizada a Análise de Balanço de Fluxo (FBA).

Análise do transcriptoma e integração ao modelo

A qualidade dos dados brutos obtida da plataforma Miseq (Illumina) foi avaliada usando o software FastQC versão 0.11.5 (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Em seguida, os dados foram refinados com o software Trimmomatic (Bolger *et al.*, 2014), onde foram retiradas as sequências de adaptadores, leituras e leituras muito pequenas com uma pontuação phred <15. As leituras restantes foram submetidas a uma nova análise de qualidade pelo FastQC. O genoma de referência de C. canephora foi indexado com o programa Bowtie2-build (Langmead *et al.*, 2009) e as leituras foram alinhadas no genoma com o software Tophat (Trapnell *et al.*, 2009). Os resultados foram usados para quantificar as transcrições e estimar a expressão diferencial de genes com o programa Cuffdiff (Trapnell *et al.*, 2010). Os genes e dados de fold-change foram integrados ao modelo baseado no genoma por meio do pacote GIMME (Becker & Palsson, 2008), disponível no software COBRAtoolbox do Matlab versão 2015a.

Infecção experimental e quantificação de metabólitos

O cultivar resistente Híbrido de Timor CIFC-832/2 e o suscetível *C. arabica* cv. Caturra CIFC 19/1 foram transferidos para uma sala de aclimatação, onde foram infectados com esporos da raça *Hemileia vastatrix* XXXIII. O controle foi realizado com folhas de ambas as cultivares sem infecção. Em cada planta, três folhas foram infectadas para a extração de metabólitos. Além do tempo zero imediatamente antes da infecção, as folhas foram coletadas às 12, 24 e 96 horas após a inoculação (hai). A extração foi feita conforme descrito por Lisec e grupo (Lisec *et al.*, 2006) com adaptações. Glicose, gliceraldeído-3-fosfato, glicerol-3-fosfato, citrato, fumarato e malato foram quantificados por LC-MS (Lu *et al.*, 2008).

RESULTADOS E DISCUSSÃO

Após a geração do modelo metabólito para *Coffea canephora*, utilizando o ModelSEED, foram encontrados 1140 genes, além de 1084 reações metabólicas e 1162 metabólitos, distribuídos em onze compartimentos subcelulares e espaço extracelular. Dentre estes, foram identificadas 19 vias do metabolismo primário (carboidratos, lipídeos, aminoácidos e nucleotídeos), totalizando 214 reações únicas, cerca de 500 genes e 300 metabólitos únicos. Ao avaliar os gráficos de PCA e *heatmap* (Figura 1), é possível observar que as cultivares possuem perfil de expressão similar nas diferentes rotas em estudo para o tempo inicial (0 h). Em intervalos subsequentes, é comum observar diferenças principalmente às 12 e 24 horas após a inoculação (hai), onde a expressão genética de c24 (Caturra 24 hai) é mais semelhante a h12 (Timor Híbrido 12 hai) do que h24 (Timor Híbrido 24 hai). Para a maioria das vias metabólicas, o perfil h24 é distante de todas as outras amostras. Depois de 96 hai, os perfis de expressão ficam mais semelhantes novamente. A maioria das mudanças na expressão gênica associadas à via de carboidratos e ao ciclo de Krebs foram observadas após 12 e 24, indicando a existência de potenciais mecanismos de resistência induzidos pelo patógeno e associados ao metabolismo.

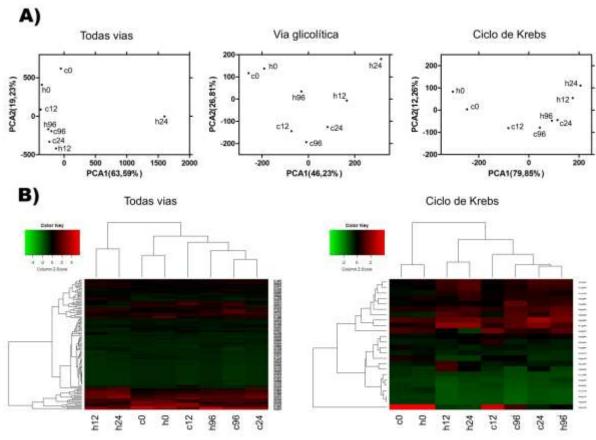


Figura 1: Análise comparativa do transcriptoma de cafeeiros suscetíveis (Caturra, c) e resistentes (Híbrido de Timor, h) infectados por *Hemileia vastatrix* após 12, 24 e 96 horas. A) PCA de todas as vias metabólicas primárias identificadas, via glicolítica e ciclo de Krebs. B) *Heatmaps* da via glicolítica e do ciclo de ácido tricarboxílico (TCA).

Após a integração do transcriptoma, foram gerados quatro modelos contexto-específicos (0, 12, 24 e 96h). Na análise dos fluxos previstos para cada modelo, a via glicolítica se destacou por ter as maiores diferenças entre os tempos avaliados e o modelo original. Na reconstrução da via glicolítica, os fluxos previstos indicaram um desvio no metabolismo para a produção de glicerol-3-fosfato, principalmente em 12 e 24 hai. A quantificação dos metabólitos confirmou a tendência indicada pelas predições (Figura 2). A concentração de glicose foi significativamente reduzida no cultivar resistente em relação ao cultivar suscetível durante a infecção. A concentração de gliceraldeído-3-fosfato e glicerol-3-fosfato em plantas resistentes em 12 e 24 hai foi significativamente maior quando comparada ao cultivar suscetível. Para validar a importância do glicerol-3P no mecanismo de resistência do cafeeiro, plantas suscetíveis a H. vastatrix foram submetidas ao tratamento com duas concentrações de glicerol. Na quantificação de glicerol-3P, não houve diferença estatística entre controle e tratamento com glicerol 1% (v/v). No entanto, a concentração de glicerol-3P no tratamento com glicerol 3% (v/v) foi semelhante à observada no Híbrido de Timor (Figura 3A). Na infecção experimental realizada após os tratamentos com glicerol, observou-se que o glicerol 1% não foi capaz de retardar ou reduzir a infecção, enquanto as plantas que receberam tratamento com glicerol 3% apresentaram menor porcentagem de lesões (Figura 3B). Juntos, esses resultados sugerem que o glicerol-3P pode ser um mecanismo importante para a resistência do café à ferrugem. Atualmente, o glicerol-3P é apontado como um sinal móvel importante da resistência sistêmica adquirida em plantas (SAR) (Chanda et al, 2011; Yang et al, 2013). A SAR é caracterizada por uma resposta que ocorre em toda a planta, não apenas no local da infecção, e pelo aumento da expressão de genes regulados pela patogênese (genes PR) (Mandal et al, 2011; Durrant & Dong, 2004). A aplicação de glicerol em folhas de cacau foi capaz de estimular a resistência contra o patógeno Phytophthora capsici (Zhang et al, 2014). Um estudo sobre a ferrugem do trigo mostrou que a aplicação de glicerol em folhas de trigo alguns dias antes da inoculação do fungo foi capaz de reduzir os sintomas da doença. Em contraste, a aplicação de glicerol no dia da inoculação ou após a inoculação não contribuiu para aumentar a resistência contra o patógeno (Li et al., 2016). Juntos, nossos resultados sugerem que as diferenças transcricionais entre plantas de café resistentes e suscetíveis durante a infecção por H. vastatrix resultam em uma remodelação metabólica que induz um mecanismo de resistência dependente de glicerol-3P.

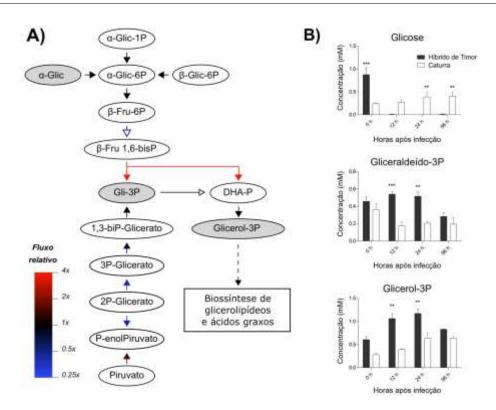


Figure 2:Análise de fluxo metabólico e quantificação de intermediários da via glicolítica em cafeeiros infectados por *H. vastatrix*. A) Reconstrução da via glicolítica baseada nos fluxos preditos após a integração do transcriptoma em 12 hai. Setas vazias representam reações que mudaram em relação ao modelo original. Os metabolitos de cor cinza foram quantificados. B) Quantificação de glicose, gliceraldeído-3P e glicerol-3P em 0, 12, 24 e 96 hai em cultivares de café resistentes (Timor Híbrido) e suscetíveis (Caturra). ** p <0,01; *** p <0,001, ANOVA de dois fatores e teste de Bonferroni.

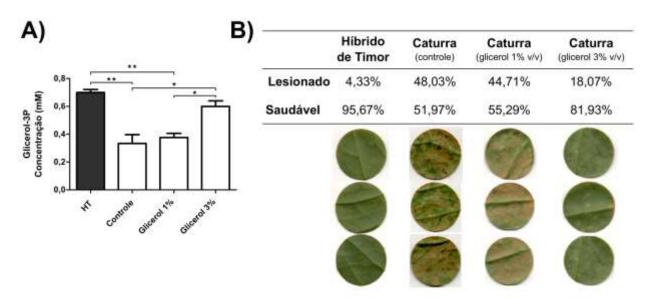


Figura 3: Análise do efeito do tratamento com glicerol em cafeeiros suscetíveis (Caturra) antes da infecção por *H. vastatrix*. A) Quantificação de glicerol-3P intracelular em cultivares resistentes (HT, Híbrido de Timor) e suscetíveis (Controle, Glicerol 1 e 3%, Caturra) tratadas com glicerol 12 hai. Os controlos (HT e Controle) foram pulverizados com água. ** p <0,01; *** p <0,001, ANOVA de dois fatores e teste de Bonferroni. B) Porcentagem de área saudável 30 dias após a infecção.

CONCLUSÕES

- 1. No presente trabalho foi possível observar diferenças no metabolismo primário do Híbrido de Timor 832/2 e de *C. arabica* cv. Caturra CIFC 19/1 ao longo da infecção por *Hemileia vastatrix*.
- 2. As maiores alterações na expressão gênica ocorreram entre 12 e 24 horas após a inoculação sugerindo que a resposta apresentada pela planta neste período é determinante para o prosseguimento ou não da doença.
- 3. Além disso, a aplicação de glicerol 3% (v/v) antes da inoculação do fungo foi capaz de reduzir as lesões provocadas pela doença sendo um forte indício de que esse metabólito tem importante papel na resistência do cafeeiro contra a ferrugem.

REFERÊNCIAS BIBLIOGRÁFICAS

BARKA GD, CAIXETA ET, DE ALMEIDA RF, ALVARENGA SM, ZAMBOLIM L (2017) Differential expression of molecular rust resistance components have distinctive profiles in *Coffea arabica - Hemileia vastatrix* interactions. *European Journal of Plant Pathology* 149: 543–561.

BETTENCOURT AJ (1981) Melhoramento genético do cafeeiro. Transferência de factores de resistência à *H. vastatrix* BERK & BR. para as principais cultivares de *Coffea arabica*. L. Centro de Investigação das Ferrugens do Cafeeiro (CIFC/IICT): 93.

CAPUCHO AS, ZAMBOLIM EM, FREITAS RL, HADDAD F, CAIXETA ET, ZAMBOLIM L (2012) Identification of race XXXIII of *Hemileia vastatrix* on *Coffea arabica* Catimor derivatives in Brazil. *Australasian Plant Disease* Notes 7: 189–191

CHANDA B, XIA Y, MANDAL MK, YU K, SEKINE K, GAO Q, SELOTE D, HU Y, STROMBERG A, NAVARRE D, KACHROO A, KACHROO P (2011) Glycerol-3-phosphate is a critical mobile inducer of systemic immunity in plants. Nat Genet 43:421–427.

DAVIS AP, TOSH J, RUCH N, FAY MF (2011) Growing coffee: *Psilanthus (Rubiaceae)* subsumed on the basis of molecular and morphological data; implications for the size, morphology, distribution and evolutionary history of *Coffea. Botanical Journal of the Linnean Society* 167, 357–377.

DENOEUD, F., *et al.* (2014) The coffee genome provides insight into the convergent evolution of caffeine biosynthesis. Science, v 5 p. 1181-1185.

DURRANT WE, DONG X (2004) Systemic acquired resistance. Annual Review of Phytopathology 42:185–209.

FLOREZ JC, MOFATTO LS, DO LIVRAMENTO FREITAS-LOPES R, FERREIRA SS, ZAMBOLIM EM, CARAZZOLLE MF, ZAMBOLIM L, CAIXETA ET (2017) High throughput transcriptome analysis of coffee reveals prehaustorial resistance in response to *Hemileia vastatrix* infection. *Plant Mol Biol* 95:607–623.

KOVALCIK A, OBRUCA S, MAROVA I (2018) Valorization of spent coffee grounds: A review. Food and Bioproducts Processing 110:104–119.

LI Y, SONG N, ZHAO C, LI F, GENG M, WANG Y, LIU W, XIE C, SUN Q (2016) Application of Glycerol for Induced Powdery Mildew Resistance in *Triticum aestivum* L. *Frontiers in Physiology* 7: 413.

MANDAL MK, CHANDA B, XIA Y, YU K, SEKINE K, GAO Q, SELOTE D, KACHROO A, KACHROO P (2011) Glycerol-3-phosphate and systemic immunity. Plant Signaling & Behavior 6:1871–1874.

SILVA M DO C, VÁRZEA V, GUERRA-GUIMARÃES L, AZINHEIRA HG, FERNANDEZ D, PETITOT A-S, BERTRAND B, LASHERMES P, NICOLE M (2006) Coffee resistance to the main diseases: leaf rust and coffee berry disease. *Brazilian Journal of Plant Physiology* 18: 119–147.

TALHINHAS P, BATISTA D, DINIZ I, VIEIRA A, SILVA DN, LOUREIRO A, TAVARES S, PEREIRA AP, AZINHEIRA HG, GUERRA-GUIMARÃES L, VÁRZEA V, SILVA M DO C (2017) The coffee leaf rust pathogen *Hemileia vastatrix*: one and a half centuries around the tropics. *Molecular Plant Pathology* 18:1039–1051.

YANG Y, ZHAO J, LIU P, XING H, LI C, WEI G, KANG Z (2013) Glycerol-3-Phosphate Metabolism in Wheat Contributes to Systemic Acquired Resistance against Puccinia striiformis f. sp. tritici. PLoS ONE 8:e81756.

ZAMBOLIM L, (2016) Current status and management of coffee leaf rust in Brazil. Trop. Plant pathol. 41: 1-8.

ZHANG Y, SMITH P, MAXIMOVA SN, GUILTINAN MJ (2014) Application of glycerol as a foliar spray activates the defence response and enhances disease resistance of *Theobroma cacao*. *Molecular Plant Pathology* 16:27–37.